
PRODUCT QUALITY THROUGH CHANGE MANAGEMENT

Richard Brooksby, Geodesic Systems, 1999–05–20

Abstract
Software development is all about increasing the value of our products to cus-
tomers. This paper presents a method of planning, tracking, and managing
change to a product, and of directing change at increasing that value. It de-
scribes evolutionary planning and delivery using a Perforce-based informa-
tion system. The paper is based on the author’s experience of introducing
Capability Maturity Model level 2 and 3 key process areas in small (less than
20 engineer) software organizations.

Geodesic Systems <URL: http://www.geodesic.com/> is the leading suppli-
er of enterprise memory and resource management solutions, tools, and serv-
ices. Richard Brooksby <rb@geodesic.com> is the Vice President of Engineer-
ing and Development.

1. Introduction
In this paper1 I’ll tell you about the best methods I’ve found for managing change to a
software product. The method I describe covers pretty much all of the key practices of
level 2 of the Capability Maturity Model [CMM1.1].2 It’s a requirements-driven process,
not specialized for any particular programming method.

2. The goal of software development
The goal of development is to increase the value of the product. The value is measured
by the customers in the product’s market. If your product is valuable enough to them
they will pay you part of that value.

But our customers keep changing their minds about what’s valuable. Software projects
are faced with continually and rapidly changing requirements. A quality product must
still meet those requirements, and it follows that a process that’s going to produce a qual-
ity product must track them carefully.

3. Knowing what is valuable
To achieve the goal we must:

1. understand what is valuable,

2. make sure that our efforts are focused on what is valuable, then

3. deliver something more valuable than before.

Understanding what is valuable is the key to the whole process. It’s achieved by
“requirements management” [KPA1.1, L2–1].
1 This paper is based on a Geodesic Systems internal document [RB98b].
2 This document does not cover “software subcontract management” [KPA1.1, L2–43], and in any case this
has been changed to “software aquisition management” in the draft CMM version 2.

mailto:rb@geodesic.com

Requirements management is how development identifies what the customer wants.
The main function of requirements management is to maintain a document containing
the customer requirements. This document states clearly what is desired by the custom-
ers, and should also place a value on each requirement estimating how much it is worth
to the company. Here are some examples of requirements:

• a feature;

• an environment, for example having the product on Windows NT;

• compatibility with other software;

• a performance attribute, such as having the product process more than 10 widgets
per second;

• an engineering attribute, such as needing less than one month to train a new de-
veloper to maintain the product;

• a reliability attribute, such as crashing less than once per week.

It’s not necessary for the requirements document to be complete, provided it covers the
things that are really important. The most important things to define are usually not the
features, but the critical attributes. They’re the things that are most difficult to track and
control [Gilb88]. Start with what you know. You will quickly discover what else you need
to say.

The requirements document contains our best idea of what the customer wants and
values, stated in objective and measurable terms. “It works out of the box” isn’t very
measurable, but it can be broken down into measurable components: installation time,
time to first use, ease of use, experience of first 30 minutes, etc. [Gilb88, chapter 9].

Whenever we discover something that the customer wants we add it to the require-
ments document. We then use the requirements to plan development.

4. Delivering value
The problem with the requirements is that they are always changing, and they usually re-
cede into the distance, so they can never really be met. If we try to meet them all in one
long delivery cycle we’re bound to deliver something that is not wanted, or even deliver
nothing at all until it’s too late.

Attempting to meet all the requirements at once is called the big bang delivery [Gilb88,
pp9–10]. The development group goes into hyperspace and hopes to come out some-
where near the desired result. The product is dismantled, and nothing works until the
whole thing is done. A wasteful “code freeze” is needed to put things back together and
“get it working”. Furthermore, the product goes untried until near the end of the cycle,
so that errors in requirements, design, or coding are not discovered until it’s too late to
do anything about them. It’s an extremely risky strategy. Errors in requirements are most
costly.

The solution to this problem is evolutionary planning and delivery [Gilb88, chapter. 7].

Product Quality through Change Management

2

The idea is simple:

1. Compare the software now with the requirements, which are what we currently
think the customer wants. This gives us a “sighting” — a direction to head in.

2. Take a step in that direction by tackling the biggest requirement or risk, delivering
the maximum value to the customer in the shortest time.

3. Deliver a complete product (that is, fully packaged, documented, and so on). It
doesn’t do everything the customer wants, but it’s much better than before.

4. Gather information from the customer, especially reactions to the delivered pro-
duct. This will modify our idea of what the customer wanted (usually quite a lot).

5. Iterate.

This is called the evolutionary delivery cycle. Take a sighting, make a step, take another
sighting, another step, and so on (see figure 2). We need to keep up with the changing re-
quirements, of course, but we are much more likely to get close to what the customer re-
ally wants, even if the customer’s ideas change. The shorter we can make the cycles the
better for us.3 There is less effort wasted going in the wrong direction and we deliver a
more valuable product.

Actually, every programmer already knows about this process, because it’s just like the
“edit-compile-run” cycle. Programmers do some development, try out the result, modify
their ideas, then do some more development, and so on. Here, we “edit” the product,
“compile” it into a release, and “run” it by the customer.

The earlier we can make a release to the customer the better and more accurate our

3 The ~100kloc projects I’ve managed did well on a two month cycle.

Product Quality through Change Management

3

solution space

start

delivery

starting requirements

ending requirements

“more”

Figure 1. Big bang delivery

sightings will be, and therefore the higher the quality of the result. Customers are also

happy because they have software which meets some of their most important require-
ments sooner.

Another significant benefit of this technique is that it clears up important delivery is-
sues early. Quite often there are critically important things that get forgotten until the
last minute.4 By delivering a complete product at each stage we discover these much ear-
lier, and last minute panics are averted. Last minute work tends to be defective, and if it’s
something critical then that’s even worse.

The disadvantage is that you have to do more analysis and planning up front, and it
seems to take longer to make changes to the software that you “know” are needed. The
advantage is that the final result is much closer to what’s wanted, so you don’t waste time
on unnecessary changes or reworking it because you find out you didn’t know after all.
In my experience the advantages outweigh the disadvantages by a significant margin.
The trouble is that you experience the disadvantages first.

5. Planning to increase value
Once we have some requirements, the next step is to look at the current status of the soft-
ware and compare it to the requirements. If you don’t know the current status then it’s
both urgent and important that you develop ways of measuring how well you’re meeting
the critical requirements; you might be able to develop tests that do this, but some sub-
jective measurements may also be needed.

There are bound to be differences between the status and the requirements. Resources
are limited and you can’t hope to meet all the requirements at once. Pick out the most
4 Like the user manual.

Product Quality through Change Management

4

solution space

start

delivery 1

requirements 1

“more”

del. 2 del. 3
del. 4

del. 5

req. 2

req. 3

req. 4

req. 5

Figure 2. Evolutionary delivery

valuable requirements that you don’t meet at the moment. Give highest priority to the
requirements that present the biggest risk of failure [Gilb88, chapter 6].

Here’s a practical example. A customer requires that the software runs on a new plat-
form. This requirement needs some refinement: are all the features and all the perfor-
mance required on the new platform? Which are most valuable to the customer? If you
could only deliver one or two features on the platform which ones would they be? Put
those first.

Get these high priority requirements analyzed so that you have some idea of the
amount of effort required to meet them. Take every opportunity you can to divide them
down into more manageable (smaller) pieces of work, and put the most effective pieces
first.

You are now in a position to plan the next few versions of the product using version
planning, a method of “software project planning” [KPA1.1, L2–11].

A version is a point in the evolution of the specification of the product. A version is a
fixed subset of the requirements that you actually intend to meet, and meet with a sched-
ule. You can think of a version as a snapshot of the ever-changing requirements.

The next version of the product should meet the high priority requirements that you
selected earlier. The version after that should meet the next few, and so on. You should
be able to work out when you can deliver the versions of the product because you have
estimates of the work required. Keep the next version within easy reach, and make the

Product Quality through Change Management

5

C

version B spec.

version A spec.

BA

req. w

req. x

req. y

req. z

no yes yes

50% 90% 95%

30min 20min 20min

3K 5K dynamic

version plan

requirements
“holy grail”

Figure 3. The development plan

date of the next version as close as you can. If there’s work that seems too large to fit, or
is too large to estimate, break it down. This may mean changing the design of the pro-

duct, or choosing a longer path to eventual full implementation. It’s worth doing that to
make sure that the product is delivered and to cope with changes of plan. It’ll also force
you to use flexible and open-ended designs which will allow the project to adapt.5

It’s only worth planning two or three versions ahead at this level of detail, because the
requirements will change and you’ll have to do it again at the next version. You should
make rough plans further into the future, but detailed plans that far out would be wasted
effort.

Specify each version against the critical requirements. This can be as simple as a table
showing which attributes you intend to affect and how much (see figure 3).

The task is now to control change to the software to evolve it towards the next version
specification, increasing the value of the product. While you’re getting there, gather re-
quirements and plan the next cycle, and so on for the lifetime of the product. It’s import-
ant not to think about starts and finishes, only about continuous evolution and improve-
ment of the product.

6. Continuous improvement
This is where we really get into change management. Figure 2 shows how each develop-
ment cycle takes the product closer to the customer requirements, increasing its value
and quality. Figure 3 shows the same thing in a different way, with the master codeline of
the product constantly evolving towards the customer requirements.

The key concept of this change management process is continuous improvement. Al-
5 Tom Gilb discusses open-ended designs for management information systems [Gilb88]. The key idea is to
choose designs that are easy to change and extend in ways that you haven’t anticipated.

Product Quality through Change Management

6

time

Figure 4. The improvement staircase

ways, always approach the requirements. Never, ever allow a change that takes you fur-
ther away. This means never allowing a change that dismantles a feature, or breaks a
piece of code, even “temporarily”. The master codeline must always be improving. In
practical terms, this means keeping the master codeline ready to build and release to cus-
tomers at any time, knowing that it will be more valuable to them than before. Figure 4 is
a diagram I like to draw to illustrate this simple idea. This is what “software configuration
management” is all about [KPA1.1, L2–71].

This makes it easy to meet delivery dates. You can always deliver. The only variation is
in exactly what you deliver, and not in when you deliver it. The software from the master
codeline is always ready to release. If you’ve been careful to focus efforts on the critical
requirements, to employ flexible design, and to break the work down into small pieces,
then you’ll always be increasing the value of the product as much as possible by the time
of the next delivery.

Most of the rest of this document explains how to achieve this happy state of affairs.

7. Issues and changes
Two types of document are used to track and control change: issues and changes.

An issue is a document that reports that the product doesn’t do what the customer
wants. This is either because it doesn’t meet its specification (a defect) or because the
specification doesn’t say what the customer wants (an enhancement, or new require-
ment). There isn’t a lot of difference as far as the customer is concerned: the product
doesn’t do what they want, and they’d like that changed. The process described in this
document treats “new development” and “bug fixing” in the same way. Issues are created
whenever someone has a problem with the product. Issues subsume bug reports and en-
hancement requests.

Issues are the only stimulus for change. If change doesn’t improve the product for the
customer, there’s no point in making it.

Issues are examined by management to decide if they’re worth pursuing. Defect issues
are scheduled depending on their impact. Enhancement issues may result in new re-
quirements (changing the requirements document).

If they’re worth pursuing they are analyzed. The problem is carefully understood and
reproduced.6 Various solutions are proposed and maybe prototyped, with estimates of ef-
fort required. The issue is then examined again by management, to decide whether to
make changes. One or more of the solutions are put into effect by creating changes.

A change document gives instructions to modify the product, and records exactly what
was done. It also allows the work to be double-checked to make sure that it actually
solves the problem and is a genuine improvement to the product. The change is not al-
lowed into the product until it has been checked. This is achieved by making the change
on a branch and only allowing it to be merged after checking (see figure 5).

Change checking is a vital step to maintaining product integrity, and therefore to con-
figuration management. Checking is how the senior engineers can ensure that the
6 For an enhancement, “reproducing” the problem means simulating the need for the new feature or be-
haviour.

Product Quality through Change Management

7

change fits into the overall design strategy. It’s an excellent place to insert a “peer
review”,7 a key practice of CMM level 3 [KPA1.1, L3–93]. It’s also a stage in which soft-
ware quality assurance can check that the change complies with the group’s best practic-

es.
At Geodesic Systems, we branch the sources within the Perforce repository as

“//info.geodesic.com/change/N/...”, where N is the change document number. One or
more people work on the change there, and update the change document as they go.
This scheme allows them to work together and submit modifications frequently8 on their
private branch.

8. Versions and releases
When a customer finds a defect in the product they want a fix as soon as possible. Tech-
nical support policy may be to give the customer a fix or workaround within a few days.
The “quick fix” solution to a problem is often not the right solution for the product in the
long term. Quick fixes often need to go in without a great deal of thought for consistency
with the overall product direction. It’s important to separate these fixes from the proper
solutions to problems, so that the product doesn’t degrade into a pile of hacks.

We can quickly resolve a customer’s problem by patching the release that they already
have. This means making the smallest and quickest change that will fix their problem.
This is better than trying to ship them something built from the latest master sources be-
cause that may have changed in other ways which will cause the customer problems.
Shipping the latest master sources is also risky. They might contain changes that are in-
compatible with the customer’s environment. They also don’t have a known specification
(so you can’t tell the customer what they’re getting) and can’t easily be maintained later.
They probably haven’t been thoroughly tested since the last version. Patching a stable re-
7 I recommend software inspection [Gilb95] as a powerful form of review.
8 I encourage developers to submit every time they make a coherent group of edits, giving them and their
colleagues a chance to document the reasoning behind their work along with the edits.

Product Quality through Change Management

8

change

finished change

merge

Figure 5. Change branching

lease gives quicker and higher quality results. This is the main motivation for version
branches (see figure 6).

A version branch is created by taking a source control branch of the master sources

when they are believed to meet the version specification. (Or, sometimes, when the dead-
line has been reached and something has to go out even if it doesn’t quite meet the speci-
fication.) The sources on the version branch are called version sources. Releases of a ver-
sion of a product are created from labeled version sources (see figure 6).

Releases of the product are only ever made from the sources on the version branch.
Source control labels are used to mark the sources from which a release was made, so
that it can be reproduced. In addition, the product image (the thing distributed to the
customers) is also archived.

At Geodesic Systems, the master sources, which include the source code, user docu-
mentation, design documents, product-related procedures, and test cases, are kept in the
Perforce repository at “//info.geodesic.com/product/master/...”. The entire tree is
branched to “//info.geodesic.com/product/version/version-name/...” to create a version
branch. Releases are built from labels along the version branch. The product image goes
in “//info.geodesic.com/product/release/release-name/...” along with release documenta-
tion.

Releases never change. The exact content of a release is committed at the point at
which the source control label for that release is created. Any problems with the release
must be solved in the next release.

Not all releases go to customers. Releases can be created for internal use, as a way of as-
sessing what the quality of the product would be. This is especially true of the first release

Product Quality through Change Management

9

version A spec.

requirements
“holy grail”

evolution towards
specification

(fixing defects)

fixes fixes

Figure 6. Version branches

on the version branch, in which testing sometimes reveals defects that will need to be
patched on the version branch.

Product Quality through Change Management

10

issue

long term
change

quick fix
change

version spec.

customer

Figure 7. Fixing defects

9. Fixing defects
Only changes that fix defects are done on the version branch. A defect is where a release
of the product doesn’t meet its version’s specification. This definition includes most
things that are commonly called “bugs”,9 most of which cause the product to fail to carry
out one of its functions. In some sense, the version branch evolves towards its specifica-
tion in the same way that the master sources evolve towards the requirements (see figure
7).

Most importantly, the version sources are a known quantity. Products built from them
have been thoroughly tested and released, and so minor changes should produce pre-
dictable results. For this reason, it’s important that they aren’t changed very much, and
any fixes done should be as small as possible to solve the specific problem that the cus-
tomer has. The aim is to get the problem fixed quickly, but without introducing other
problems.

Of course, if a defect is found in a version it probably also exists in the master sources
as well, and needs to be fixed there too (see figure 6). The fix that is done in the master
sources should be a more carefully planned change. Mainly, it needs to be a maintainable
change, properly documented, and respecting the architecture of the product. This
change has to last indefinitely, whereas the change to the version branch only has to last
until the customer upgrades to the next version.

This apparent duplication of effort shouldn’t be seen as a waste but as an opportunity.
Most of the work should be done in the analysis of the issue to work out what should be
done. A bandage is then applied to the version sources to fix the problem, while a com-
plete cure is effected to the masters. A “quick fix” might be to describe a workaround to
the customer.

10. Testing and Tracking
Once a release is built it needs to be tested. The purpose of this testing is to compare the
product to its specification so that management can decide whether it’s suitable for gen-
eral release, and to provide feedback for planning as part of “software project tracking
and oversight” [KPA1.1, L2–29].

Acceptance testing is driven by version specifications. The version specification says ex-
actly what the product is supposed to be like (unlike the requirements) and the release
should match. Acceptance test development can begin as soon as the version is planned,
in parallel with product development.

Regression testing is driven by issues. Each issue is covered by a regression test, and
possibly more than one. There can be a many-to-many relationship between tests and is-
sues, as long as the relationship is clear. Regression test development can be fed from the
issue process, in parallel with solution development.

It’s also useful to focus testing on the areas of the software which have changed. Re-
9 There are two reasons I don’t like to use the word “bug”. Firstly, “defect” is a better technical term for a
discrepancy between product behaviour and specification. Secondly, a “bug” sounds like some sort of ex-
ternal influence on the software, like a cosmic ray, but is usually someone’s mistake which needs to be un-
derstood, corrected, and prevented, not merely “swatted”.

Product Quality through Change Management

11

gression and acceptance testing can be focused on the areas of recent change by studying
the change documents.

The results of testing can be tabulated against the requirements and issues and directly
compared with the version plan table (see figure 3), giving a clear idea of the release
quality and value. This makes it easy for a senior manager to make an informed decision
about making the release generally available.

Defects (differences between the release and its version’s specification) are submitted
as issues. These can be patched up quickly using the method described in section 9, since
we have already created a version branch, and general release is never delayed very long.

11. Implementation
It’s possible to implement this process in about 12 months in a team of about 20 develop-
ers, starting from a situation with no planning or source control.

At Geodesic Systems, I set up an “information server” running FreeBSD, Apache, and
p4d, with Apache configured to serve the entire contents of the Perforce repository. I
used the fact that Perforce filespecs resemble URLs to make them interchangeable (our
depot is called “info.geodesic.com”, not “depot”). This makes it extremely easy for people
to share information. All the e-mail at the company is archived, with each message at a
unique URL. All documents — requirements, plans, versions, releases, issues, changes,
designs, procedures, tests, proposals, meeting minutes, and source code files — are
stored and indexed in Perforce in HTML so that they can be referenced using URLs. (I es-
pecially encourage cross-referencing from code to requirements, designs, changes, issues,
and e-mail threads.) The document names are chosen carefully so that cross-references
don’t break.

The developers use a “handbook” of procedures when working [RB98a], and these pro-
cedures are maintained and refined as we learn more about what’s effective. We use the
version planning, issues, and changes to modify this too. (This is “process change man-
agement” [KPA1.1, L5–31], a level 5 practice.)

Product Quality through Change Management

12

12. Conclusion
In this paper, I’ve described the best methods I’ve found for managing software product
development, and how these relate to the Capability Maturity Model [CMM1.1].

There’s a lot I haven’t said about how this method affects the software design and its
impact on the working environment and developer attitudes. There are also a lot of small
lessons that we’ve learned and incorporated into our process handbooks. Most of these
are specific to our organization and the problems of our software.

The most important thing is that the organization is learning by using an information
system and a defined software process that can change and evolve just like the software
itself. The process, like the product, is never finished until it is dead, and its successors
have moved on.

A. References

[Gilb88] “Principles of Software Engineering Management”; Tom Gilb; Addison-Wes-
ley; 1988; ISBN 0–201–19246–2.

[Gilb95] “Software Inspection”; Tom Gilb, Dorothy Graham; Addison-Wesley; 1995;
ISBN 0–201–63181–4.

[RB98a] “Change Management Handbook”; Richard Brooksby; Geodesic Systems;
1998–02–17; <URL: http://info.geodesic.com/proc/cm/>.

[RB98b] “Achieving Quality through Change Management”; Richard Brooksby; Geo-
desic Systems; 1998–07–03; <URL:
http://info.geodesic.com/doc/1998–07–03/
quality-change/>.

[CMM1.1] “The Capability Maturity Model For Software, Version 1.1”; Mark C. Paulk,
Bill Curtis, Mary Beth Chrissis, Charles V. Weber; Software Engineering Insti-
tute, Carnegie Mellon University <URL: http://www.sei.cmu.edu/>; 1993;
CMU/SEI–93–TR–24, ESC–TR–93–177.

[KPA1.1] “Key Practices of the Capability Maturity Model, Version 1.1”; Mark C. Paulk,
Charles V. Weber, Suzanne M. Garcia, Mary Beth Chrissis, Marilyn Bush;
Software Engineering Institute, Carnegie Mellon University; 1993;
CMU/SEI–93–TR–25, ESC–TR–93–178.

Product Quality through Change Management

13

http://info.geodesic.com/doc/1998�07�03/

	1. Introduction
	2. The goal of software development
	3. Knowing what is valuable
	4. Delivering value
	5. Planning to increase value
	6. Continuous improvement
	7. Issues and changes
	8. Versions and releases
	9. Fixing defects
	10. Testing and Tracking
	11. Implementation
	12. Conclusion
	A. References

